The Role of C∗-algebras in Infinite Dimensional Numerical Linear Algebra

نویسندگان

  • William Arveson
  • WILLIAM ARVESON
چکیده

This paper deals with mathematical issues relating to the computation of spectra of self adjoint operators on Hilbert spaces. We describe a general method for approximating the spectrum of an operator A using the eigenvalues of large finite dimensional truncations of A. The results of several papers are summarized which imply that the method is effective in most cases of interest. Special attention is paid to the Schrödinger operators of one-dimensional quantum systems. We believe that these results serve to make a broader point, namely that numerical problems involving infinite dimensional operators require a reformulation in terms of C∗-algebras. Indeed, it is only when the given operator A is viewed as an element of an appropriate C∗-algebra A that one can see the precise nature of the limit of the finite dimensional eigenvalue distributions: the limit is associated with a tracial state on A. For example, in the case where A is the discretized Schrödinger operator associated with a one-dimensional quantum system, A is a simple C∗-algebra having a unique tracial state. In these cases there is a precise asymptotic result. 1991 Mathematics Subject Classification. Primary 46L40; Secondary 81E05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonexpansive mappings on complex C*-algebras and their fixed points

A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...

متن کامل

Completely continuous Banach algebras

 For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto  fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...

متن کامل

ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS

Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...

متن کامل

Completely Continuous Banach Algebras

For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a suffici...

متن کامل

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005